Skip to main content
padlock icon - secure page this page is secure

Defect detection capability of pulsed transient thermography

Buy Article:

$22.00 + tax (Refund Policy)

Pulsed thermography is gaining wide acceptance in the aerospace, automotive and power generation industries, owing to its quickness of inspection, repeatability and sensitivity. Recently, advancement in pulsed thermographic data processing has been made by Thermal Wave Imaging Inc (TWI) in USA. A technique called thermographic signal reconstruction (TSR) has been devised. By approximating the raw data sequence with logarithmic polynomial function, this technique produces three types of images, namely: the synthetic image and first and second time derivative images. These images facilitate detection of smaller and/or deeper defects, which are undetectable on the raw data sequence. In this work, qualitative and quantitative assessments of the TSR images have been conducted using aluminium, CFRP and GFRP composites and mild steel samples. Results have validated the significant enhancement of the TSR process. A quantitative study performed using CFRP composite has shown that an improvement of 60% in detection depth has achieved for defects greater than 4 mm diameter. Defects have been imaged at depths greater than 5 mm in composites.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Research Centre in NDE (RCNDE), Department of Mechanical Engineering, University of Bath, Claverdon Down, Bath BA2 7AY, UK

Publication date: April 1, 2005

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more