Skip to main content
padlock icon - secure page this page is secure

Vibration-based tools for the optimisation of large-scale industrial wind turbine devices

Buy Article:

$17.00 + tax (Refund Policy)

Wind turbine (WT) maintenance management must be in continuous improvement to develop reliability, availability, maintainability and safety (RAMS) programmes and to achieve time and cost reductions in large-scale industrial wind turbines. The optimisation of the operation reliability involves supervisory control and data acquisition to guarantee the correct levels of RAMS. A fault detection and diagnosis methodology (FDD) is proposed for the mechanical devices of a WT. The method applies the wavelet and Fourier analysis to vibration signals. The signals collected contain information on failures found in the gearbox-generator set. The information is initially tested by the fast Fourier transform (FFT) to ensure its accuracy. Then, a pattern is created based on energies that relate each failure to different frequency bands. This pattern uses the wavelet transform as the main technique. A number of turbines of the same type were instrumented in the same wind farm. The data collected from the individual turbines was fused together and analysed in order to determine the overall performance. It is expected that data fusion allows for a significant improvement, since the information gained from various condition monitoring systems can be enhanced. The paper will also focus on the application of dependable, embedded computer systems for a reliable implementation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: FAST FOURIER TRANSFORM; MAINTENANCE MANAGEMENT; VIBRATION; WAVELET; WIND TURBINES

Document Type: Research Article

Publication date: 01 June 2016

More about this publication?
  • IJCM is a scientific-technical journal containing high-quality innovative in-depth peer-reviewed papers on all the condition monitoring disciplines, including: acoustic emission methods, electric motor insulation and signature analysis, flow rate monitoring, infrared thermography, lubrication management, optical monitoring, pressure monitoring, temperature monitoring, vibration analysis and also on damage and failure analysis, modelling for condition monitoring, prognostics, sensors and actuators.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more