Skip to main content

Cold Shock Protein A from Corynebacterium pseudotuberculosis: Role of Electrostatic Forces in the Stability of the Secondary Structure

Buy Article:

$68.00 + tax (Refund Policy)

The conformational stability of the Cold shock protein A (CspA) from C. pseudotuberculosis (Cp), a nucleic acid binding protein in function of pH and salt concentration was examined by using differential scanning calorimetry and CD spectroscopy in combination with computational analysis to identify the specify amino acids undergoing change. Our approach identified a sodiumbinding site in CpCspA and at pH 8.0 a significant reduction in the β-sheet content was observed which resulted in a decrease of the protein thermal stability. The computational analyses identified His30 and His65 as the amino acids with the largest charge shifts at different pHs. His30/His65 are part of the extensive hydrogen bonding network and along with the ion-binding site are essential for the conformational stability of CspA.

Keywords: C. pseudotuberculosis; Cold shock protein; histidine; ion binding; pH; secondary structure

Document Type: Research Article

Publication date: 01 April 2017

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content