Skip to main content
padlock icon - secure page this page is secure

Stabilization of Human Immunoglobulin G Encapsulated within Biodegradable Poly (Cyclohexane-1, 4-diyl Acetone Dimethylene Ketal) (PCADK)/ Poly (Lactic-co-Glycolic Acid) (PLGA) Blend Microspheres

Buy Article:

$68.00 + tax (Refund Policy)

The aim of this study was to prepare PCADK/PLGA-blend microspheres for improving the stability of human immunoglobulin G (IgG). The short half-life of antibodies limit their development as therapeutic agents, thus PLGA microspheres were prepared to sustained release antibodies and prolong their half-life. However, the acidic intra-microsphere environment causes the loss of antibody stability and activity. In this study, the effect of PCADK or PLGA degradation products on IgG was investigated by size exclusion chromatography (SEC-HPLC), circular dichroism (CD), fluorescence spectroscopy and antigenicity detection. The degradation products of PCADK exerted a larger influence on IgG than that of PLGA. Then PCADK/PLGA microspheres were prepared by the emulsionsolvent evaporation method and systematically characterized and 20% PCADK were selected as the optimal proportion. In addition, the release profile of microspheres and the stability of the released IgG were investigated. The stability of the IgG released from the PCADK/PLGA microspheres was better than that of IgG released from the PLGA microspheres. Confocal laser scanning microscopy (CLSM) was used to determine the pH inside the microspheres. The IgG-loaded PCADK/PLGA microspheres have important advantages over the PLGA microspheres in terms of IgG stability and could be a good carrier to deliver antibodies for the treatment of disease.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Immunoglobulin G; PCADK; PLGA; microspheres; stabilization

Document Type: Research Article

Publication date: November 1, 2015

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more