Skip to main content

Characterization and cloning of an 11S globulin with hemagglutination activity from Murraya paniculata

Buy Article:

$68.00 + tax (Refund Policy)

A ~56 kDa protein having hemagglutination activity was purified and characterized from the Murraya paniculata seeds. The gel electrophoresis studies demonstrated that protein is primarily of two different subunits, molecular weight ~ 35 and 21 kDa held together by disulfide-linkages and predominantly by secondary forces. The cloning and sequence analysis revealed that the protein exhibited a substantial sequence identity to seed storage 11S globulin family proteins. The sequence analysis of Murraya paniculata globulin (MPG) demonstrated higher and lower molecular weight polypeptides to be acidic (α) and basic (β) respectively. The sequence analysis further showed that it possesses a characteristic bi-cupin motif and a putative metal binding pocket. CD analysis revealed that the MPG was a β/α protein with a slightly higher content of the former. Conformational changes in protein have been studied by fluorescence spectrometry by using various chemical treatments. The results demonstrated that MPG belongs to 11S globulin family and exhibit's hemagglutination activity, which implicates it to be possessing lectin-like property.

Keywords: 11S Globulin; Cupin motif; Hemagglutination activity; Metal binding; Murraya paniculata

Document Type: Research Article

Publication date: 01 August 2015

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content