Skip to main content

Angiotensin Converting Enzyme 2 Activator (DIZE) Modulates Metabolic Profiles in Mice, Decreasing Lipogenesis

Buy Article:

$68.00 + tax (Refund Policy)

Recent studies have shown that angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang) -(1-7)/Mas axis activation is able to improve the metabolic profile, enhance glucose tolerance and insulin sensitivity, improve metabolic parameters, and counteract deleterious effects of Ang II. The effects of endogenous ACE 2 activation on the metabolic profile of mice are poorly studied. In this study, 12 weeks old male mice were treated with the ACE 2 activator (diminazene aceturate, DIZE, 1 mg/kg/day, gavage) or saline (control) for 30 days followed by glucose tolerance tests, insulin sensitivity tests, and blood analysis. Epididymal ACE2, ACE, angiotensinogen, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) were measured by quantitative RT-PCR. ACE 2 activation treatment lowered body weight (DIZE vs control) (28.69 vs 30.28g, P < 0.001), serum cholesterol (140,0 vs 177.5; P < .05), and serum triglycerides (75,00 vs 165,0; P < .05) as well as epididymal (0.008 vs 0.016; P < .05) and retroperitoneal (0.0024 vs. 0.0068; P < .01) adipose tissue weights. These effects were associated with significantly increased epididymal ACE 2 and decreased ACE and angiotensinogen (AGT) expression. Additionally, DIZE decreased adipogenesis-related gene transcription, such as ACC and FAS mRNA. In conclusion, these results indicate that activation of ACE2 by oral DIZE treatment improves the metabolic profile and reduces fat deposition in mice. These results, along with the reduction of lipogenesis markers open a new perspective for metabolic disorder pharmacotherapy.

Keywords: ACE 2; adipose tissue; angiotensin II; diminazene aceturate; lipolysis; metabolic disorder

Document Type: Research Article

Publication date: 01 April 2015

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content