
Engineering Novel Anticoagulant Proteins by Motif Grafting
Structure-based rational design has been considered as a promising approach to design novel proteins. For this purpose, we designed artificial anticoagulant proteins that are able to target Factor Xa (FXa) using a functional motifgrafting approach. The motif corresponded to the residues
Cys15 to Cys42 of Ancylostoma caninum anticoagulant peptide 5 (AcAP5), a potent FXa inhibitor. By screening of the Protein Data Bank (PDB) using Vector Alignment Search Tool (VAST, search for three-dimensional scaffolds in protein structures), we screened scaffolds as hosts to reproduce the
functional topology of this motif. Three designed artificial chimeric proteins were expressed and purified to test their FXainhibiting ability. One of the recombinant proteins, pep3, was found to inhibit FXa with strong activity (IC50 of 152 nM) in vitro. Moreover, pep3 inhibited arterial
thrombosis formation in rats with uniform potency compared with natural AcAP5. Therefore, our data demonstrate that motif-grafting is a useful tool to engineer novel artificial anticoagulant proteins.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: AcAP5; Factor Xa; VAST; anticoagulant; inhibitor; motif-grafting
Document Type: Research Article
Publication date: February 1, 2014
- Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites