Skip to main content
padlock icon - secure page this page is secure

Investigation of the Mechanism of Protein Denaturation by Guanidine Hydrochloride-Induced Dissociation of Inhibitor-Protease Complexes

Buy Article:

$68.00 + tax (Refund Policy)

In this communication we describe an approach in which guanidine hydrochloride-induced dissociation of a protein inhibitor-serine protease complex is used to explore the molecular basis of protein denaturation. The rationale behind this approach is that the inhibitor-protease complex is stabilized by the same types of non-covalent interactions that stabilize the native state of a protein. The dissociation of inhibitor-protease complex can be performed at concentrations of guanidine hydrochloride at which the inhibitor and the protease retain their native conformations. Here, we present our results on the effect of 0.1M to 0.4M guanidine hydrochloride concentrations on the association equilibrium constants (reciprocal of dissociation constant) of P1G, P1A, P1V, P1N, and P1S variants of turkey ovomucoid third domain with bovine α-chymotrypsin. We use these results to calculate the free energy change in the dissociation of inhibitor-protease complexes (the m value) per mol of guanidine hydrochloride concentration. Our results agree with the general consensus that the denaturing effect of guanidine hydrochloride is due to its favorable interaction with the polar parts of proteins and that the non-polar side chains have no or little favorable interaction with guanidine hydrochloride.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chymotrypsin; denaturation; osmolytes; protease inhibitor; serine proteases; turkey ovomucoid third domain

Document Type: Research Article

Publication date: February 1, 2013

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more