Skip to main content
padlock icon - secure page this page is secure

Solid Phase Synthesis of a Glycopeptide Analogue Using the Acid Sensitive 4-Methoxybenzhydryl Bromide Resin

Buy Article:

$68.00 + tax (Refund Policy)

A convenient solid phase synthesis of a Thrombin Receptor Glycopeptide Mimetic analogue namely, 1-OMethyl- 2-N-{1’-(argininocarbonyl)-4’-[(4’’-fluoro)-benzylamido]-cyclohexane}-glucosamine using Fmoc/tBu methodology and the 4-Methoxybenzhydryl bromide resin is described. The synthesized analogue was purified by Reverse Phase High Performance Liquid Chromatography (RP-HPLC) and was identified by Electron Spray Ionization-Mass Spectrometry (ESI-MS) and Nuclear Magnetic Resonance (NMR). The synthetic protocol introduced for the first time successfully the acid sensitive 4-Methoxybenzhydryl bromide resin as a scaffold for the synthesis of glycopeptides resulting in high yield reactions. This synthetic procedure could be a general one for the convenient synthesis of such glyco compounds as the method was used for the first time to glycosylate a non peptide mimetic of an important protein sequence, in particular of the thrombin receptor active site S42FLLR46.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 4-Methoxybenzhydryl bromide resin (MDMR-Br); Fmoc/tBu solid phase synthesis; Glycopeptides; glucosamine; glycoproteins

Document Type: Research Article

Publication date: January 1, 2008

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more