Skip to main content
padlock icon - secure page this page is secure

Comparative Kinomics of Plasmodium Organisms: Unity in Diversity

Buy Article:

$68.00 + tax (Refund Policy)

Phosphorylation by protein kinases is a very common and crucial process in many signal transduction pathways in eukaryotes. This review describes comparative protein kinase analysis of two apicomplexa Plasmodium falciparum (3D7 strain) and Plasmodium yoelii yoelii (17XNL strain) which are causative agents of malaria in human and African rat respectively. Sensitive bioinformatics techniques enable identification of 82 and 60 putative protein kinases in P. falciparum and P. yoelii yoelii respectively and these sequences could be classified into known subfamilies of protein kinases. The most populated kinase subfamilies in both the plasmodium species correspond to CAMK and CMGC groups. Analysis of domain architectures enables detection of uncommon domain organization in kinases of both the organisms such as kinase domain tethered to EF hands as well as PH domain. Components of MAPK signaling pathway is not well conserved in plasmodium organisms. Such observations suggest that plasmodium protein kinases are highly divergent from other eukaryotes. A transmembrane kinase with 6 membrane spanning segments in P. falciparum seems to have no orthologue in P. yoelii yoelii. 19 P. falciparum kinases have been found to cluster separately from P. yoelii yoelii kinases and hence these kinases are unique to P. falciparum genome. Only 28 orthologous pairs of kinases seem to be present between these two plasmodium organisms. Comparative kinome analysis of two plasmodium species has thus provided clues to the function of many protein kinases based upon their classification and domain organization and also implicate marked differences even between two plasmodium organisms.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Comparative genomics; domain organization; kinomes; malaria; plasmodium organisms; protein kinase; protein phosphorylation; protozoa; signal transduction

Document Type: Research Article

Publication date: June 1, 2007

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more