Skip to main content
padlock icon - secure page this page is secure

Free Content Nanotechnology in Insulin Delivery for Management of Diabetes

Download Article:
 Download
(PDF 2,613.8 kb)
 
Diabetes is a group of diseases characterized by hyperglycemia and originating from the deficiency or resistance to insulin, or both. Ultimately, the most effective treatment for patients with diabetes involves subcutaneous injections of insulin. However, this route of administration is often painful and inconvenient, as most patients will have to selfadminister it at least twice a day for the rest of their lives. Also, infection, insulin precipitation, and either lipoatrophy or lipohypertrophy are frequently observed at the site of injection. To date, several alternative routes of insulin administration have been explored, including nasal, pulmonary and oral. Although the delivery of insulin is an ideal route for diabetic patients, several limitations have to be overcome such as the rapid degradation of insulin in gastric fluid and low oral bioavailability. Numerous strategies have been carried out to improve these limited parameters such as the use of enzyme inhibitors, absorption enhancers, mucoadhesive polymers and chemical modification for receptor-mediated absorption. Also, insulin-loaded nanocarriers bypass several physiological barriers. This current review focuses on the various barriers existing in the delivery of insulin through the oral route and the strategies undertaken so far to overcome those obstacles using nanocarriers as a potential vehicle of insulin.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Diabetes mellitus; insulin; insulin analog; nanoparticles; nasal delivery; oral delivery; pulmonary delivery

Document Type: Review Article

Publication date: April 1, 2019

More about this publication?
  • Pharmaceutical Nanotechnology publishes original manuscripts, reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more