Skip to main content
padlock icon - secure page this page is secure

An Overview of Data Mining Algorithms in Drug Induced Toxicity Prediction

Buy Article:

$68.00 + tax (Refund Policy)

The growth in chemical diversity has increased the need to adjudicate the toxicity of different chemical compounds raising the burden on the demand of animal testing. The toxicity evaluation requires time consuming and expensive undertaking, leading to the deprivation of the methods employed for screening chemicals pointing towards the need to develop more efficient toxicity assessment systems. Computational approaches have reduced the time as well as the cost for evaluating the toxicity and kinetic behavior of any chemical. The accessibility of a large amount of data and the intense need of turning this data into useful information have attracted the attention towards data mining. Machine Learning, one of the powerful data mining techniques has evolved as the most effective and potent tool for exploring new insights on combinatorial relationships among various experimental data generated. The article accounts on some sophisticated machine learning algorithms like Artificial Neural Networks (ANN), Support Vector Machine (SVM), k-mean clustering and Self Organizing Maps (SOM) with some of the available tools used for classification, sorting and toxicological evaluation of data, clarifying, how data mining and machine learning interact cooperatively to facilitate knowledge discovery. Addressing the association of some commonly used expert systems, we briefly outline some real world applications to consider the crucial role of data set partitioning.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bioinformatics; computational prediction; data mining; in silico; machine learning; toxicity prediction

Document Type: Research Article

Publication date: April 1, 2014

More about this publication?
  • The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.

    The scope of Mini-Reviews in Medicinal Chemistry will cover all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.

    Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more