Skip to main content
padlock icon - secure page this page is secure

Computer-Aided Engineering of GPCRS and Its Application to Drug Discovery

Buy Chapter:

$68.00 + tax (Refund Policy)

G protein-coupled receptors (GPCRs) represent the largest family of signal transduction membrane proteins and play a critical role in many key physiological processes such as neurotransmission, cellular metabolism, secretion, cell growth, immune defence, and differentiation. Therefore, it is not surprising that these receptors represent a realized and ongoing opportunity for drug development. In this scenario, structure-based drug design techniques turned out to be a really attractive approach, leading to a breakthrough in the discovery of novel therapeutic agents. Indeed, much of this success has to be attributed to the pioneering elucidation of the bovine rhodopsin crystal structure, which represents a milestone in the understanding of GPCRs structures. Starting from the experimentally found rhodopsin 3D coordinates, the tandem application of homology building techniques and molecular docking has become one the most important approaches for structure and ligand binding analysis. Nevertheless, the construction of realistic models of certain GPCRs still remains time consuming and requires many refinements of the models in close association with experiments. This review is aimed at providing a deep view into the current status of GPCR modeling, highlighting the recent progresses made in the rhodopsin-based homology building together with alternative computational approaches. The application of these techniques in the detection of GPCR ligands and the elucidation on how they impact the world of drug discovery is also discussed.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: adenosine triphosphate; g-proteins; intracellular loop; molecular dynamics (md) simulations; pharmacophore-based design; rhodopsin

Document Type: Research Article

Publication date: March 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more