Skip to main content
padlock icon - secure page this page is secure

Scoring Functions for Virtual Screening

Buy Chapter:

$68.00 + tax (Refund Policy)

The docking and scoring paradigm can be considered as the combination of two separate problems. The first aspect is a geometric, or more broadly an informatics problem: how can we place a solid object (ligand) within a “cavity” of another solid (protein) or close to another molecule in a well-defined Cartesian space? The second one is a more intriguing chemical problem: how can we properly predict the free energy of binding considering all the possible contributions involved in biological interactions? There is a wide range of algorithms and approaches used to produce docking poses and, consequently, a wide range of associated scoring functions used to judge the possible poses. In several cases the scoring functions are deeply entwined with the search method and can not be considered separately. In other cases, more than one scoring function is provided in docking programs, each showing different strengths and limitations. Consensus scoring approaches, combining multiple methods into a single metric, have been created to overcome the weaknesses characterizing the different docking algorithms and the associated scoring functions. Correctly predicting not just the binding mode, but also the binding energy, is a primary exigency in all docking simulations and, in particular, in virtual screening applications. Accurate estimation of binding free energy would allow, not only good discrimination between active and inactive molecules, but also among closely related analogs, this latter case being particularly important for drug design. In this chapter we discuss problems related to docking/scoring techniques for in silico screening and we review the most common scoring methods.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: dock method; flexible ligands oriented on grid; force field-based methods; hiv protease; molecular mechanics approximation; one window free energy grid

Document Type: Research Article

Publication date: March 1, 2007

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more