Skip to main content
padlock icon - secure page this page is secure

Targeting Wnt Signaling through Small molecules in Governing Stem Cell Fate and Diseases

Buy Article:

$68.00 + tax (Refund Policy)

Background: The conserved Wnt/β-catenin signaling pathway is responsible for multiple functions including regulation of stem cell pluripotency, cell migration, self-renewability and cell fate determination. This signaling pathway is of utmost importance, owing to its ability to fuel tissue repair and regeneration of stem cell activity in diverse organs. The human adult stem cells including hematopoietic cells, intestinal cells, mammary and mesenchymal cells rely on the manifold effects of Wnt pathway. The consequences of any dysfunction or manipulation in the Wnt genes or Wnt pathway components result in specific developmental defects and may even lead to cancer, as it is often implicated in stem cell control. It is absolutely essential to possess a comprehensive understanding of the inhibition and/ or stimulation of the Wnt signaling pathway which in turn is implicated in determining the fate of the stem cells.

Results: In recent years, there has been considerable interest in the studies associated with the implementation of small molecule compounds in key areas of stem cell biology including regeneration differentiation, proliferation. In support of this statement, small molecules have unfolded as imperative tools to selectively activate and inhibit specific developmental signaling pathways involving the less complex mechanism of action. These compounds have been reported to modulate the core molecular mechanisms by which the stem cells regenerate and differentiate.

Conclusion: This review aims to provide an overview of the prevalent trends in the small molecules based regulation of stem cell fate via targeting the Wnt signaling pathway.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: DCA; Wnt activators; Wnt inhibitors; Wnt ligands; XAV939; alzheimer; leukemia; progenitor cells; pyrvinium; quercetin

Document Type: Review Article

Publication date: May 1, 2019

More about this publication?
  • This journal is devoted to timely reviews of experimental and clinical studies in the field of endocrine, metabolic, and immune disorders. Specific emphasis is placed on humoral and cellular targets for natural, synthetic, and genetically engineered drugs that enhance or impair endocrine, metabolic, and immune parameters and functions. Topics related to the neuroendocrine-immune axis are given special emphasis in view of the growing interest in stress-related, inflammatory, autoimmune, and degenerative disorders.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more