Skip to main content
padlock icon - secure page this page is secure

Open Access Recent Advances in the Understanding of Sepsis-Induced Alterations in the Neuroendocrine System

Download Article:
 Download
(PDF 419.9 kb)
 
Sepsis is a fatal systemic inflammatory disease. It is caused by an immune system inflammatory response to the entry of microorganisms or their products into the blood circulatory system. The pathophysiological mechanisms of sepsis are still poorly understood. The presence of microorganisms in the systemic circulation causes activation of the immune system, which in turn leads to a robust release of inflammatory cytokines. These inflammatory cytokines result in alterations across all important physiological systems, including the neuroendocrine system. Neuroendocrine responses differ between the acute and the late phase of sepsis. In the acute phase there are robust alterations in the secretion of neuroendocrine hormones in response to body demand. In the late phase, the plasma concentrations of some hormones remain low, despite heavy systemic demand, whereas several others increase despite of diminished needs. In this review, we give a brief overview on sepsis-induced major alterations in neuroendocrine secretions, and summarize current knowledge about mechanisms and targets for their treatment.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cytokines; hormonal therapy; hypothalamus; immune system; neuroendocrine system; neuroendocrinopathy; pituitary; sepsis

Document Type: Research Article

Publication date: December 1, 2013

More about this publication?
  • This journal is devoted to timely reviews of experimental and clinical studies in the field of endocrine, metabolic, and immune disorders. Specific emphasis is placed on humoral and cellular targets for natural, synthetic, and genetically engineered drugs that enhance or impair endocrine, metabolic, and immune parameters and functions. Topics related to the neuroendocrine-immune axis are given special emphasis in view of the growing interest in stress-related, inflammatory, autoimmune, and degenerative disorders.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more