Skip to main content
padlock icon - secure page this page is secure

Characterization of CYP3A Isozymes Involved in the Metabolism of Domperidone: Role of Cytochrome b5 and Inhibition by Ketoconazole

Buy Article:

$68.00 + tax (Refund Policy)

Previous studies have indicated that CYP3As are involved in the metabolism of the prokinetic agent domperidone. The objectives of our study were to characterize further the role of specific CYP3A isoforms in the metabolism of domperidone and to compare the kinetic parameters of domperidone to those of the CYP3A probe drug midazolam. Intrinsic clearance for the formation of domperidone major metabolite (5-hydroxydomperidone) was the highest with rCYP3A4 (0.4 mL/min/nmol CYP450) compared to rCYP3A5 (0.04 mL/min/nmol CYP450). The addition of cytochrome b5 to recombinant enzymes (rCYP3A4 or rCYP3A5) increased up to 6-fold the Vmax for the formation of 5- hydroxydomperidone. In contrast, much similar intrinsic clearance values for rCYP3A4 and rCYP3A5 were determined in the respective formation of either 1-hydroxmidazolam (1.28 and 1.57 mL/min/nmol CYP450) or 4-hydroxymidazolam (0.04 and 0.06 mL/min/nmol CYP450). Vmax for the formation of midazolam metabolites was increased to a lesser extent (1.5-3-fold) by the addition of cytochrome b5. Ketoconazole more potently inhibited CYP3A4 than CYP3A5 for both domperidone and midazolam. However, the addition of cytochrome b5 to the incubation mixture appeared to decrease the inhibitory potency of ketoconazole towards CYP3A4 for domperidone but not for midazolam. Our results indicate that CYP3A4 plays major role in the metabolism of domperidone. We demonstrated a modulatory role of cytochrome b5 mostly for the metabolism of domperidone and confirmed selective inhibition of CYP3A4 over CYP3A5 by ketoconazole. Comparison of domperidone kinetic parameters to those of the CYP3A probe drug midazolam suggests that domperidone exhibits a much higher CYP3A4/CYP3A5 selectivity ratio than midazolam.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: CYP3A4; CYP3A5; Cytochromes P450; cytochrome b5; domperidone; drug metabolism; midazolam

Document Type: Research Article

Publication date: April 1, 2010

More about this publication?
  • Drug Metabolism Letters publishes short papers on major advances in all areas of drug metabolism and disposition. The emphasis will be on publishing quality papers very rapidly. Letters will be processed rapidly by taking full advantage of the Internet technology for both the submission and review of manuscripts. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites, reactive intermediate and glutathione conjugates.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more