Skip to main content
padlock icon - secure page this page is secure

Mechanical Properties of Composite Hydrogels for Tissue Engineering

Buy Article:

$68.00 + tax (Refund Policy)

Tissue engineering provides solutions that require medicine to restore damaged tissues or even complete organs. This discipline combines biologically active scaffolds, cells and molecules; being the addition of nanoparticles into the scaffolds, one of the techniques that is attracting more interest these days. In this work, Hydroxyapatite Nanorods (HA) were added to the network of Gelatin hydrogel (GE), and the particular properties resulting from their interaction were studied. Specifically, viscoelastic properties were characterized as a function of gel and nanoparticle concentration, varying ratios and temperatures. Oscillatory Time Sweeps (OTS) provided the necessary information about how the timeresolved material property/structure alteration. A wide variety of Continuous Flow Tests and Frequency Sweeps were used to describe the mechanical properties of the material, proving that the presence of nanoparticles led to a reinforcement of the gel network, mechanical stiffness and strength. The thixotropic nature of the gels was also evaluated and the most common theoretical models were described and commented. The attributes inferred from the data, showed a material that can allow the natural growth of bone tissue whilst withstanding properly the mechanical efforts; resulting in a material with an outstanding suitability to be used in regenerative medicine.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Cells; Hydroxyapatite Nanorods; Medicine; Molecules; Nanoparticles; Organs

Document Type: Review Article

Publication date: May 1, 2018

This article was made available online on August 27, 2018 as a Fast Track article with title: "Mechanical Properties of Composite Hydrogels for Tissue Engineering".

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more