Skip to main content
padlock icon - secure page this page is secure

Calcium Signaling in Mammalian Eggs at Fertilization

Buy Article:

$68.00 + tax (Refund Policy)

The innovation and development of live-cell fluorescence imaging methods have revealed the dynamic aspects of intracellular Ca2+ in a wide variety of cells. The fertilized egg, the very first cell to be a new individual, has long been under extensive investigations utilizing Ca2+ imaging since its early days, and spatiotemporal Ca2+ dynamics and underlying mechanisms of Ca2+ mobilization, as well as physiological roles of Ca2+ at fertilization, have become more or less evident in various animal species. In this article, we illustrate characteristic patterns of Ca2+ dynamics in mammalian gametes and molecular basis for Ca2+ release from intracellular stores leading to the elevation in cytoplasmic Ca2+ concentration, and describe the identity and properties of sperm-borne egg-activating factor in relation to the induction of Ca2+ waves and Ca2+ oscillations, referring to its potential use in artificial egg activation as infertility treatment. In addition, a possible Ca2+ influx-driven mechanism for slow and long-lasting Ca2+ oscillations characteristic of mammalian eggs is proposed, based on the recent experimental findings and mathematical modeling. Cumulative knowledge about the roles of Ca2+ in the egg activation leading to early embryogenesis is summarized, to emphasize the diversity of functions that Ca2+ can perform in a single type of cell.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 4; 5-trisphosphate; Calcium influx; Calcium oscillations; Calcium release; Calcium wave; Egg activation; Fertilization; Fluorescence imaging; Infertility; Inositol 1; Phospholipase Cζ

Document Type: Research Article

Publication date: October 1, 2016

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more