Skip to main content
padlock icon - secure page this page is secure

Kernel-Based Feature Selection Techniques for Transport Proteins Based on Star Graph Topological Indices

Buy Article:

$68.00 + tax (Refund Policy)

The transport of the molecules inside cells is a very important topic, especially in Drug Metabolism. The experimental testing of the new proteins for the transporter molecular function is expensive and inefficient due to the large amount of new peptides. Therefore, there is a need for cheap and fast theoretical models to predict the transporter proteins. In the current work, the primary structure of a protein is represented as a molecular Star graph, characterized by a series of topological indices. The dataset was made up of 2,503 protein chains, out of which 413 have transporter molecular function and 2,090 have no transporter function. These indices were used as input to several classification techniques to find the best Quantitative Structure Activity Relationship (QSAR) model that can evaluate the transporter function of a new protein chain. Among several feature selection techniques, the Support Vector Machine Recursive Feature Elimination allows us to obtain a classification model based on 20 attributes with a true positive rate of 83% and a false positive rate of 16.7%.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: QSAR; Star Graph; Support Vector Machine; topological indices; transport protein

Document Type: Research Article

Publication date: July 1, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more