Skip to main content
padlock icon - secure page this page is secure

Molecular Recognition of Human Angiotensin-Coverting Enzyme I (hACE I) and Different Inhibitors

Buy Article:

$68.00 + tax (Refund Policy)

The human angiontensin-converting enzyme I (hACEI) is a zinc metalloproteinase that hydrolytically cleaves a C-terminal dipeptide from a wide range of peptide substrates, and it plays an important role in regulating blood pressure. MD simulations and interaction energy calculations for docking and crystal structures were performed to investigate the correct conformation of the ACE with enalaprilat and nanopepetide. The analysis of root-mean-squrared fluctuation (RMSF), which is usually applied to measure the mobility and flexibility of the proteins, and dynamic correlation of residues show that the fluctuation pattern of the each two structure of the same ligand is almost the same mode. Hydrogen bond analysis shows that the correct crystal conformation is more stable than a wrong docking conformation. In addition, we are demonstrating that calculating interaction energy between protein and its ligands is an accurate and efficient way to select the correct conformation from docking conformations.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: ACE; binding mode; different conformations; interaction energy

Document Type: Research Article

Publication date: May 1, 2013

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more