Skip to main content
padlock icon - secure page this page is secure

In-Silico ADME Models: A General Assessment of their Utility in Drug Discovery Applications

Buy Article:

$68.00 + tax (Refund Policy)

ADME prediction is an extremely challenging area as many of the properties we try to predict are a result of multiple physiological processes. In this review we consider how in-silico predictions of ADME processes can be used to help bias medicinal chemistry into more ideal areas of property space, minimizing the number of compounds needed to be synthesized to obtain the required biochemical/physico-chemical profile. While such models are not sufficiently accurate to act as a replacement for in-vivo or in-vitro methods, in-silico methods nevertheless can help us to understand the underlying physico-chemical dependencies of the different ADME properties, and thus can give us inspiration on how to optimize them. Many global in-silico ADME models (i.e generated on large, diverse datasets) have been reported in the literature. In this paper we selectively review representatives from each distinct class and discuss their relative utility in drug discovery. For each ADME parameter, we limit our discussion to the most recent, most predictive or most insightful examples in the literature to highlight the current state of the art. In each case we briefly summarize the different types of models available for each parameter (i.e simple rules, physico-chemical and 3D based QSAR predictions), their overall accuracy and the underlying SAR. We also discuss the utility of the models as related to lead generation and optimization phases of discovery research.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: ADME; QSAR; SAR; in-silico modeling; lead generation; rules of thumb lead optimization

Document Type: Research Article

Publication date: February 1, 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more