
Choline-PET/CT in the Differential Diagnosis Between Cystic Glioblastoma and Intraparenchymal Hemorrhage
Objective: Glioblastoma multiforme (GBM) represents the most common and malignant glioma, accounting for 45%-50% of all gliomas. The median survival time for patients with glioblastoma is only 12-15 months after surgical, chemioterapic and radiotherapic treatment; a correct diagnosis
is naturally fundamental to establish a rapid and correct therapy. Non-invasive imaging plays a pivotal role in each phase of the diagnostic workup of patients with suspected for diagnosis. The aim of this case report was to describe the potential clinical impact of 18F-fluorocholine (FCH)
PET/CT in the assessment of a cystic GBM mimicking a spontaneous hemorrhage.
Methods: a 57 years-old male with intraparenchymal hemorrhage at CT imaging initially in reduction ad serial imaging and suspected right fronto-temporo-parietal lesion at MRI underwent dynamic and static (60' after tracer injection) FCH PET/CT of the brain.
Results: FCH PET/CT showed rapid tracer uptake after few second from injection at dynamic acquisition and consequent incremental mild uptake at static imaging after 60 minutes at the level of oval formation in the right cerebral hemisphere characterized by annular and peripheral high metabolic activity. The central region of the lesion was characterized by the absence 18F-FCH uptake most likely due to blood component. The patient underwent surgery for tumor removal; the histopathological examination confirmed the suspect of GBM. Chemo-radiotherapic adjuvant protocol according to Stupp protocol was therefore administrated; to date the patient is alive without any progression disease at 5 months from treatment.
Conclusion: In this case report FCH PET/CT represented the final diagnostic technique to confirm the suspicious of a cystic GBM. Our case demonstrated the potential role of 18F-FCH PET/CT for discrimination of higher proliferation area over intraparenchymal hemorrhage, supporting the potential use of this imaging biomarker in surgical or radiosurgical approach. Obviously, further prospective studies are needed to confirm this role and to exactly define possible routinely applications.
Methods: a 57 years-old male with intraparenchymal hemorrhage at CT imaging initially in reduction ad serial imaging and suspected right fronto-temporo-parietal lesion at MRI underwent dynamic and static (60' after tracer injection) FCH PET/CT of the brain.
Results: FCH PET/CT showed rapid tracer uptake after few second from injection at dynamic acquisition and consequent incremental mild uptake at static imaging after 60 minutes at the level of oval formation in the right cerebral hemisphere characterized by annular and peripheral high metabolic activity. The central region of the lesion was characterized by the absence 18F-FCH uptake most likely due to blood component. The patient underwent surgery for tumor removal; the histopathological examination confirmed the suspect of GBM. Chemo-radiotherapic adjuvant protocol according to Stupp protocol was therefore administrated; to date the patient is alive without any progression disease at 5 months from treatment.
Conclusion: In this case report FCH PET/CT represented the final diagnostic technique to confirm the suspicious of a cystic GBM. Our case demonstrated the potential role of 18F-FCH PET/CT for discrimination of higher proliferation area over intraparenchymal hemorrhage, supporting the potential use of this imaging biomarker in surgical or radiosurgical approach. Obviously, further prospective studies are needed to confirm this role and to exactly define possible routinely applications.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: 18F-FCH PET/CT; GBM; brain tumor; choline; cystic glioblastoma; hemorrhage
Document Type: Case Report
Publication date: April 1, 2019
- Current Radiopharmaceuticals publishes original research articles, letters, reviews, drug clinical trial studies and guest edited issues on all aspects of research and development of radiolabelled compound preparations. The scope of the journal covers the following areas: radio imaging techniques, therapies; preparation and application of radionuclide compounds including the incorporation of tracer methods used in scientific research and applications.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites