Skip to main content

Computational Drug Repositioning by Target Hopping: A Use Case in Chagas Disease

Buy Article:

$68.00 + tax (Refund Policy)

Background: Drug repositioning aims to identify novel indications for existing drugs. One approach to repositioning exploits shared binding sites between the drug targets and other proteins. Here, we review the principle and algorithms of such target hopping and illustrate them in Chagas disease, an in Latin America widely spread, but neglected disease. Conclusion: We demonstrate how target hopping recovers known treatments for Chagas disease and predicts novel drugs, such as the antiviral foscarnet, which we predict to target Farnesyl Pyrophosphate Synthase in Trypanosoma cruzi, the causative agent of Chagas disease.

Keywords: Chagas disease; Drug repositioning; drug discovery; drug re-purposing; structural bioinformatics; structure alignment; target hopping

Document Type: Research Article

Publication date: June 1, 2016

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content