Skip to main content
padlock icon - secure page this page is secure

Rho Kinase Inhibitors: Potential Treatments for Diabetes and Diabetic Complications

Buy Article:

$68.00 + tax (Refund Policy)

The small GTPase RhoA and its downstream effector, Rho kinase (ROCK), appear to mediate numerous pathophysiological signals, including smooth muscle cell contraction, actin cytoskeleton organization, cell adhesion and motility, proliferation, differentiation and the expression of several genes. Clinical interest in the RhoA/ROCK pathway has increased, due to emerging evidence that this signaling pathway is involved in the pathogenesis of several diseases, including hypertension, coronary vasospasm, stroke, atherosclerosis, heart failure and diabetes; ROCK is considered an important future therapeutic target. Several pharmaceutical companies are already actively engaged in the development of ROCK inhibitors as the next generation of therapeutic agents for these diseases. This review discusses the relationship between diabetes and hyperglycemia-induced RhoA/ROCK activation, highlights recent findings on the roles of ROCK inhibitors from experimental models of diabetes and clinical studies in cardiovascular patients, and elucidates major challenges for developing more selective ROCK inhibitors. Accumulating evidence suggests the potential of ROCK inhibitors as therapeutic agents for diabetes and its complications.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: GTPase; Rho kinase; RhoA; atherosclerosis; complications; coronary vasospasm; diabetes; hypertension; inhibitors; stroke

Document Type: Research Article

Affiliations: Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.

Publication date: July 1, 2012

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more