Skip to main content
padlock icon - secure page this page is secure

Possible Involvement of Advanced Glycation End-Products (AGEs) in the Pathogenesis of Alzheimer's Disease

Buy Article:

$68.00 + tax (Refund Policy)

Alzheimer's disease (AD) is the most common cause of dementia in developed countries. AD is characterized pathologically by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs), the major constituents of which are amyloid β protein and tau protein, respectively. Advanced glycation end-products (AGEs), senescent macroprotein derivatives formed at an accelerated rate under normal aging, can be identified immunohistochemically in both SPs and NFTs in AD patients. Further, recent clinical evidence has suggested diabetes mellitus as one of the risk factors for the development and progression of AD. Continuous hyperglycemia is a causative factor for diabetic vascular complications, and it enhances the generation of AGEs through the non-enzymatic glycation, thereby being involved in the pathogenesis of AD as well. Moreover, there is a growing body of evidence to show that the interaction of AGEs with a receptor for AGEs (RAGE) elicits reactive oxygen species generation and vascular inflammation, and subsequently alters various gene expressions in numerous types of cells, all of which could contribute to the pathological changes of diabetic vascular complications and AD. Indeed, we have recently found that glyceraldehyde-derived AGEs (Glycer-AGE) induce apoptotic cell death in cultured cortical neuronal cells. In addition, we also found that neurotoxic effect of diabetic serum on neuronal cells was blocked by neutralizing antibody raised against Glycer-AGE. In human AD brains, Glycer-AGE are actually detected in the cytosol of neurons in the hippocampus and para-hippocampal gyrus. These observations suggest that Glycer-AGE play a role in the pathogenesis of AD. In this review, we discuss the pathophysiological role for AGEs in the development and progression of AD, especially focusing on Glycer-AGE.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Advanced glycation end-products (AGEs); Alzheimer's disease (AD); Toxic AGEs (TAGE); diabetes mellitus (DM); diabetic vascular complications; glyceraldehyde-derived AGEs (Glycer-AGE); receptor for AGEs (RAGE)

Document Type: Research Article

Affiliations: Department of Pathophysiological Science, Faculty of Pharmaceutical Sciences, Hokuriku University,Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan.

Publication date: April 1, 2008

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more