Skip to main content
padlock icon - secure page this page is secure

Modified Fibrin Hydrogel Matrices: Both, 3D-Scaffolds and Local and Controlled Release Systems to Stimulate Angiogenesis

Buy Article:

$68.00 + tax (Refund Policy)

Sufficient blood perfusion is essential for all tissues to guarantee nutrient- and gas exchange. As many diseases are induced by the reduction of blood perfusion such that these tissues gradually loose their ability to function properly, therapeutic angiogenesis aims to increase blood flow in ischemic tissues by stimulating the patient's endogenous capacity to develop new blood vessels. These studies include application of angiogenesis stimulating (growth) factors and adhesion sequences as well as local gene therapy.

One approach is to rationally design 3D-fibrin hydrogel matrices that provide specific adhesion sequences such as a receptor for αvβ3- integrin expressed on angiogenic endothelial cells and that, in addition, are able to store and release angiogenic growth factors such as VEGF-A165 and bFGF that target cell type-specific responses. Moreover, these matrices can be modified to release complexed plasmid DNA that transfect surrounding cells and improve angiogenesis. During wound healing, cells infiltrate into the scaffold and degrade it, thereby releasing entrapped growth factors or complexed plasmid DNA, and with the speed of tissue regeneration the scaffold is completely removed when tissue healing is achieved.

The long-term aim is to develop biomimetic 3D-matrices for applications in a biomaterials context that can be applied directly at the site of injury by minimal invasive surgery. 3D-fibrin matrices constitute a scaffold and release system for single or combined therapeutic biomolecules and may therefore be able to contribute to the patients' endogenous healing response resulting in the functional recovery of a diseased tissue or organ.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 3D-fibrin hydrogel matrices; Angiogenesis; DNA-nanoparticles; local and controlled release; wound healing

Document Type: Research Article

Affiliations: Department of Materials ETH Zurich, Cells and Biomaterials, Wolfgang Pauli Strasse 10, HCI E415, CH-093 Zurich, Switzerland.

Publication date: December 1, 2007

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more