Skip to main content
padlock icon - secure page this page is secure

Nitric Oxide-Dependent Neovascularization Role in the Lower Extremity Disease

Buy Article:

$68.00 + tax (Refund Policy)

Peripheral arterial occlusive disease (PAD) describes vascular disorders associated with ischemia and PAD affects about 8 million people in the United States. Moreover, PAD's prevalence can increase dramatically if cardiovascular disease is present. In healthy individuals reducing blood flow through the lower extremity is followed by a physiological process to limit ischemia in the distal tissue. This process is called revascularization and impairing revascularization results in PAD. Studies suggest nitric oxide (NO) maybe involved in the ischemia-dependent hindlimb revascularization process. NO is increased in the ischemic hindlimb and eliminating NO impairs the revascularization process. Moreover, restoring NO improves hindlimb revascularization. NO may be acting through its effects on vascular tone, cell migration, or extracellular matrix degradation. The present review illustrates nitric oxide's critical role in the ischemia-induced hindlimb revascularization. Thus, restoring normal NO levels in diseased arteries may represent a viable therapeutic avenue by supplementing exogenous NO or employing therapeutic strategies to either increase NO synthesis and its messengers or decrease NO catabolism.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Angiogenesis; arteriogenesis; nitric oxide; peripheral arterial disease; revasculatization

Document Type: Research Article

Affiliations: CINVESTAV-Monterrey Cerro de las Mitras, 2565, Col Obispado 64060 Monterrey N.L. Mexico.

Publication date: December 1, 2007

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more