Skip to main content

Beta-Glucuronidase-Mediated Drug Release

Buy Article:

$68.00 + tax (Refund Policy)

The selective activation of a relatively non-toxic prodrug by an enzyme present only in the tumour should enhance the drug concentration at the tumour site and result in a better anti-tumour effect and a reduction in systemic toxicity as compared to conventional chemotherapy. β-Glucuronidase is such an enzyme. It is normally expressed in the lysosomes of cells. In larger tumours, however, high levels of the enzyme are present in necrotic areas. Several glucuronide prodrugs have been synthesised that can be activated by β- glucuronidase. They are relatively non-toxic due to their hydrophilic nature, which prevents them from entering cells and thus from contact with lysosomal β-glucuronidase. The main problem of glucuronide prodrugs for clinical use is their fast renal clearance. Special attention should be paid to the development of new less hydrophilic prodrugs with slower clearance, as this would result in a prolonged exposure to β- glucuronidase at the site of the tumour and a reduction of the amount of prodrug needed. A number of interesting anthracyclin-based glucuronide prodrugs have been synthesised and have shown favourable therapeutic effects compared to treatment with the parent drug. The tumoural levels of β-glucuronidase can even be enhanced by two-step approaches, in which exogenous enzyme is targeted to the tumour by an antibody (ADEPT) or by the gene encoding the enzyme in transduced tumour cells (GDEPT). The ADEPT and GDEPT approaches in combination with glucuronide prodrugs have shown enhanced efficacy in experimental tumour models. Further improvement of ADEPT and GDEPT is warranted to optimise the tumour uptake and retention of antibody-enzyme fusion proteins and the efficiency and safety of current gene delivery methods. In conclusion, it is clear that glucuronide prodrugs hold promise for future use in the treatment of cancer in patients as monotherapy. Enhancement of the therapeutic effects of glucuronide prodrugs, also in patients with small tumour lesions, may possibly be achieved by techniques that target β-glucuronidase specifically to the site of the tumour.

Keywords: adept; gdept; glucuronidase; glucuronide prodrug; molecular chemotherapy; suicide gene

Document Type: Review Article

Publication date: 01 July 2002

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content