Skip to main content

The Potential Utility of 5-HT1A Receptor Antagonists in the Treatment of Cognitive Dysfunction Associated with Alzheimer's Disease

Buy Article:

$68.00 + tax (Refund Policy)

The 5-HT1A receptor has been extensively studied over the last two decades. There is a plethora of information describing its anatomical, physiological and biochemical roles in the brain. In addition, the development of selective pharmacological tools coupled with our understanding of psychiatric pathology has lead to multiple hypotheses for the therapeutic utility of 5-HT1A agents and in particular 5-HT1A receptor antagonists. Over the last decade it has been suggested that 5-HT1A receptor antagonists may have therapeutic utility in such diseases as depression, anxiety, drug and nicotine withdrawal as well as schizophrenia. However, a very compelling rationale has been developed for the therapeutic potential of 5-HT1A receptor antagonists in Alzheimer's disease and potentially other diseases with associated cognitive dysfunction. Receptor blockade by a 5-HT1A receptor antagonist appears to enhance activation and signaling through heterosynaptic neuronal circuits known to be involved in cognitive processes and, as such, represents a novel therapeutic approach to the treatment of cognitive deficits associated with Alzheimer's disease and potentially other disorders with underlying cognitive dysfunction.

Keywords: 5-HT1A Receptor Antagonists; Alzheimers Disease

Document Type: Review Article

Publication date: 01 January 2002

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content