Skip to main content
padlock icon - secure page this page is secure

Stability of Drugs of Abuse in Urine Samples at Room Temperature by Use of a Salts Mixture

Buy Article:

$68.00 + tax (Refund Policy)

Background: It has long been recognized that ensuring analyte stability is of crucial importance in the use of any quantitative bioanalytical method. As analyses are usually not performed directly after collection of the biological samples, but after these have been processed and stored, it is essential that analyte stability can be maintained at storage conditions to ensure that the obtained concentration results adequately reflect those directly after sampling. The conservation of urine samples in refrigerated/ frozen conditions is strongly recommended; but not always feasible. The aim of this study was to assess the stability of some well-known drugs of abuse methamphetamine (MA), 11-nor-9-carboxy-Δ9- tetrahydrocannabinol (THC-COOH), benzoylecgonine (BE), and morphine (MOR) in urine samples kept at room temperature by adding a salt mixture (sodium citrate, sodium ascorbate, borax).

Methods: Two different urine samples were prepared with and without salt mixture, stored at room temperature and then analyzed by gas chromatography-mass spectrometry at 0, 1, 7, 15, and 30 days after collection/preparation to look for eventual analyte degradation.

Results: Methamphetamine showed no significant changes with respect to the time of collection/ preparation (T0) up to 7 days later (T7), with or without salt mixture addiction. Then a significant degradation occurred in both salted and non salted urine. BE decrease was observed starting from day 1 after sample collection in salted and not salted samples, respectively. Salt addition seemed to reduce at least the initial BE degradation, with a significant difference (p<0.001) at 7 and 15 days of storage. However, the degradation was not more prevented in salted samples at 30 days of storage. A 20% decrease of MOR concentration was observed starting from day 1 after collection/preparation, both in salted and not salted samples with no subsequent decrease. With regard to THCCOOH, a significant decrease was observed starting from 7 days after collection/preparation, with of without adding the salt mixture. However, when comparing salted versus non salted samples at each time point, a statistically significant difference was observed at 7 and 30 days of storage.

Conclusion: The results obtained indicate that the degradation of MA, THC-COOH and BE in urine samples kept at room temperature can be slowed by the addition of the salt mixture, whereas it seems to be ineffective in samples containing MOR. This evidence has to be taken into account, in the eventuality of using salted urine to prevent in a certain extent abuse of above-reported drugs of abuse.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Drugs of abuse; Gas chromatography-mass spectrometry (GC-MS); analyte stability; room temperature; salt mixture; urine sample

Document Type: Research Article

Publication date: August 1, 2017

This article was made available online on December 15, 2017 as a Fast Track article with title: "Stability of Drugs of Abuse in Urine Samples at Room Temperature by Use of a Salt Mixture".

More about this publication?
  • Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in both pre-clinical and clinical areas of Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more