Skip to main content
padlock icon - secure page this page is secure

Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate

Buy Article:

$68.00 + tax (Refund Policy)

Background: Vaccine formulations may contain visible and/or subvisible particles, which can vary in both size and morphology. Extrinsic particles, which are particles not part of the product such as foreign contaminants, are generally considered undesirable and should be eliminated or controlled in injectable products. However, biological products, in particular vaccines, may also contain particles that are inherent to the product. Here we focus on the characterization of visible and subvisible particles in a live, replication-deficient viral vaccine candidate against HSV genital herpes in an early developmental stage.

Method: HSV-2 viral vaccine was characterized using a panel of analytical methods, including Fourier transform infrared spectroscopy (FTIR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, liquid chromatography-mass spectrometry (LC-MS), light microscopy, transmission electron microscopy (TEM), micro-flow imaging (MFI), dynamic light scattering (DLS), right angle light scattering (RALS), and intrinsic fluorescence.

Results: Particles in HSV-2 vaccine typically ranged from hundreds of nanometers to hundreds of micrometers in size and were determined to be inherent to the product. The infectious titer did not correlate with any trend in subvisible particle concentration and size distribution as shown by DLS, MFI, and TEM under stressed conditions. This suggested that particle changes in the submicron range were related to HSV-2 virion structure and had direct impact on biological activity. It was also observed that subvisible and visible particles could induce aggregation in the viral product. The temperature induced aggregation was observed by RALS, intrinsic fluorescence, and DLS. The increase of subvisible particle size with temperature could be fitted to a two-step thermokinetic model.

Conclusion: Visible and subvisible particles were found to be inherent to the HSV-2 viral vaccine product. The mechanism of protein aggregation was discussed and a two-step thermokinetic aggregation profile was proposed. The approaches reported in this study may be applied to a variety of vaccines and other biological products, as a way to assess the consistency of the manufacturing process and identify key product quality attributes.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: HSV-2; mathematical model; particle size analysis; physicochemical properties; thermal stability; vaccines

Document Type: Research Article

Publication date: July 1, 2017

This article was made available online on September 29, 2017 as a Fast Track article with title: "Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate".

More about this publication?
  • Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in both pre-clinical and clinical areas of Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more