Skip to main content
padlock icon - secure page this page is secure

High-Throughput Functional Genomic Methods to Analyze the Effects of Dietary Lipids

Buy Article:

$68.00 + tax (Refund Policy)

The applications of 'omics' (genomics, transcriptomics, proteomics and metabolomics) technologies in nutritional studies have opened new possibilities to understand the effects and the action of different diets both in healthy and diseased states and help to define personalized diets and to develop new drugs that revert or prevent the negative dietary effects. Several single nucleotide polymorphisms have already been investigated for potential gene-diet interactions in the response to different lipid diets. It is also well-known that besides the known cellular effects of lipid nutrition, dietary lipids influence gene expression in a tissue, concentration and age-dependent manner. Protein expression and post-translational changes due to different diets have been reported as well. To understand the molecular basis of the effects and roles of dietary lipids high-throughput functional genomic methods such as DNA- or protein microarrays, high-throughput NMR and mass spectrometry are needed to assess the changes in a global way at the genome, at the transcriptome, at the proteome and at the metabolome level. The present review will focus on different high-throughput technologies from the aspects of assessing the effects of dietary fatty acids including cholesterol and polyunsaturated fatty acids. Several genes were identified that exhibited altered expression in response to fish-oil treatment of human lung cancer cells, including protein kinase C, natriuretic peptide receptor-A, PKNbeta, interleukin-1 receptor associated kinase- 1 (IRAK-1) and diacylglycerol kinase genes by using high-throughput quantitative real-time PCR. Other results will also be mentioned obtained from cholesterol and polyunsaturated fatty acid fed animals by using DNA- and protein microarrays.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: APOA1 gene promoter; Protein Microarrays; polyunsaturated fatty acids (PUFA); quantitative real-time PCR (QRT-PCR) methodologies; receptor-A (NPR1)

Document Type: Research Article

Affiliations: Laboratory for Functional Genomics, Biological Research Center of the Hungarian Academy of Sciences, Temesvari krt. 62. Szeged, H-6726, Hungary.

Publication date: December 1, 2006

More about this publication?
  • Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in both pre-clinical and clinical areas of Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more