Skip to main content
padlock icon - secure page this page is secure

Derivation of Clinically Applicable Schwann Cells from Bone Marrow Stromal Cells for Neural Repair and Regeneration

Buy Article:

$63.00 + tax (Refund Policy)

Schwann cells are critically important for tissue repair, axonal regrowth and remyelination following injury to peripheral nerves. The absence of Schwann cells or an equivalent cell type in the central nervous system (CNS) may limit the regeneration capacity of the CNS. Mesenchymal stem cells (MSCs) have therefore been investigated for their potential to be induced to develop a Schwann cell phenotype. The methods for derivation of Schwann cell-like cells from MSCs and the benefits and limitations of each of these methods are presented in this review. Issues related to instability of the derived Schwann cell phenotype, apoptosis of derived cells in transplants, and the inability to predict with confidence how the cells will behave after transplantation are discussed. Finally, we suggest the need for further elucidation of the biology of Schwann cell differentiation and the signals for their derivation from MSC, in order to resolve these obstacles and to enable transplantation of MSC-derived Schwann cells as a therapeutic strategy in CNS injury.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Mesenchymal stem cells; Schwann cells; central nervous system; embryonic stem cells; induced pluripotent stem cells; neural stem cels; olfactory ensheathing cells; peripheral nervous system; spinal cord injury; stem cell co-culture; two-step induction

Document Type: Research Article

Publication date: 01 June 2011

More about this publication?
  • CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in neurological and CNS disorders. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more