Skip to main content
padlock icon - secure page this page is secure

Exposure to Enriched Environment Restores the mRNA Expression of Mineralocorticoid and Glucocorticoid Receptors in the Hippocampus and Ameliorates Depressive-like Symptoms in Chronically Stressed Rats

Buy Article:

$68.00 + tax (Refund Policy)

Chronic stress can cause emotional dysfunction, but exposure to an enriched environment (EE) can benefit emotional homeostasis. Recent studies have demonstrated that EE can ameliorate stress-induced depressive-like behaviors. Whether hypothalamic-pituitary-adrenal (HPA) axis activity and corticosteroid receptors are involved in these effects of EE is not known. In our current study, we examined HPA axis activity and hippocampal mineralocorticoid receptor/glucocorticoid receptor (MR/GR) mRNA levels following chronic stress in rats. Our study showed that stress reduced body weight, decreased sucrose intake and sucrose preference, and increased immobility in a forced swimming test. These effects were ameliorated by EE. Also we found that 21 days of restraint stress resulted in low HPA axis activity, and a reduction of MR mRNA and MR/GR ratio in the hippocampus of rats, which was restored by EE. Thus, our current results emphasizes the efficiency of EE in the amelioration of stress-induced decrease in the mRNA expression of MR and MR/GR ratio as well as behavioral depression, providing initial evidence for a possible mechanism by which an enriched environment can restore stress-induced deficits.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chronic restraint stress; HPA axis; Neurohormone Assay; ameliorated; antidepressant therapeutic effects; corticosteroid receptor; corticosterone levels; depression; desensitization; emotional dysfunction; enriched environment; habituation; hippocampal mineralocorticoid; homeostasis; restraint stress

Document Type: Research Article

Publication date: November 1, 2011

More about this publication?
  • Current Neurovascular Research (CNR) provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum for the publication of novel and pioneering original work as well as timely neuroscience research reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridge the gap between basic science research and clinical discovery. CNR emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more