Skip to main content
padlock icon - secure page this page is secure

Silver Nanowires Stability and Burying into Substrates Under MeV Proton Irradiation

Buy Article:

$68.00 + tax (Refund Policy)

Background: Silver nanowires (Ag-NWs) are promising as a kind of novel conducting materials for the next generation nanodevice for space application either in the form of interconnecting conducting NWs to integrate nanodevices or for transparent electrodes for solar cell. In order to explore the possible application of Ag-NWs for upper space, radiation hardness testing is important.

Methods: In this research work, total dose radiation tolerance of Ag-NWs under proton environment is investigated. Ag-NWs were irradiated with proton ions in MeV energy range. The dose of ions varies from 5x1015 to 1x1017 protons/cm2 and its effects on morphology and structure of the Ag-NWs are studied by scanning electron microscopy and X-ray diffraction respectively.

Results: It is observed that Ag-NWs remained stable under proton beam irradiation at the dose of 1x1017 protons/cm2 and high proton flux (1013 p/cm²/sec). Moreover, for the first time whole Ag- NWs network are embedded into a glass and silicon substrates by proton beam irradiation and depth of embedding increases with increase proton dose. At the dose of 7x1016 protons/cm2 Ag-NWs networks are fully buried while morphology and structure of Ag-NWs remain stable. At a given energy the flux plays a major role in mass transport. Burying of Ag-NWs is explained on the basis of ioninduced viscous flow and thermal processes.

Conclusion: It is concluded that morphology and structure of Ag-NWs remain stable after irradiation with MeV proton ions at different doses ranging from 5x1015 to 1x1017 protons/cm2. Whereas, at the dose of 1x1017 protons/cm2 the proton irradiation reveals that the structure deterioration in the Ag- NWs crystallinity from the nearly single to polycrystalline orientation. Moreover, Ag-NWs network is buried into the substrate materials via proton beam irradiation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Ag nanowires; ion-induced viscous flow; mass transport; proton irradiation; radiation stability; thermal spike model

Document Type: Research Article

Publication date: December 1, 2016

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more