Skip to main content
padlock icon - secure page this page is secure

Chitosan-Gold Nanocomposite for Copper Ions Detection

Buy Article:

$68.00 + tax (Refund Policy)

Background: The presence of heavy metals in water is very harmful for the environment and the human’s health. Some heavy metals such as copper, at trace levels, are indispensable to preserve the metabolism of the human body. The application of the electrochemical methods (potentiometric and impedimetric) for Cu detection are simple and low cost with short detection times. One of the most important challenges in sensors development is how to increase sensibility and the obtained the best detection limit. The aim of this work is to investigate and compare two different types of electrochemical (potentiometric and impedimetric) methods for detection of Cu2+ ions in aqueous solution using chitosan-gold nanoparticles (CS-AuNPs) membrane.

Methods: CS-AuNPs membrane has been prepared by adding of AuNPs obtained using Turkevich method to the CS dispersed in the acid acetic solution. Potentiometric and impedimetric measurements were performed using a graphite-epoxy electrode modified by CS-AuNPs membrane in aqueous solution in the concentration range of 10−9 to 10−1 M of Cu(NO3)2.

Results: For the first time, the relation between percolation threshold and detection limit of copper ions has been established. The best detection limit in both methods has been observed when the concentration of AuNPs is near the percolation threshold. Obtained results show that potentiometric method has a detection limit of 2.36 × 10-5 and a linear response range between 2.36 × 10-5 and 4 × 10-2 M of Cu2+. However, impedimetric method shows superior properties: detection limit ca. 10-7 M, linear response range 10-7-10-3 M of Cu2+ ions.

Conclusion: The obtained relationship between impedance measurements and critical percolation concentration of AuNPs are of primary importance in the design and optimization of nanocomposite for sensor application. Our results suggest that CS-AuNPs membranes can be used for the development of a low cost sensor for copper detection based upon potentiometric and impedimetric measurements.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chitosan nanocomposite; copper ions detection; gold nanoparticles; impedimetric measurements; percolation threshold; potentiometric measurements

Document Type: Research Article

Publication date: December 1, 2016

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more