Skip to main content
padlock icon - secure page this page is secure

Review on AFM Tip-Based Mechanical Nanomachining: The Influence of the Input Machining Parameters on the Outcomes

Buy Article:

$68.00 + tax (Refund Policy)

Background: Nowadays, atomic force microscopy (AFM) tip-based nanofabrication technique has been determined as an effective material removing tool for fabricating various nanostructures due to its low cost, easy operation, nanoscale accuracy and requirement of atmospheric experimental environment.

Methods: We conducted a structured search of AFM tip-based machining databases for peer-reviewed research literature using a focused classification criterion. The advantages and deficiencies of the screened papers are analyzed in detail.

Results: Fifty-one papers were included in this review and they were mainly divided into five parts. Thirteen papers outlined the influence of the normal load on the machined depth and both experimental and theoretical methods to obtain the relationship between the normal load and the machined depth are discussed based on these papers. Seven papers presented the effect of the scratching velocity on the machining results and the authors found the scratching velocity have a large influence on the tip wear and the shape accuracy of the machined nanostructures. The effects of the tip geometrical shape and the scratching direction are described in five papers to demonstrate the importance of the selection of the scratching direction. Ten papers defined the influences of the sample and probe materials on the machining outcomes. They estimated the nanoscale machinability of the sample materials by using AFM-based scratching method and the tip wear after machining. Moreover, some applications of AFM-based mechanical nanomachining method were outlined in six papers.

Conclusion: Following an overview of the feasibility and effectiveness of using mechanical scratching with various machining parameters, specific directions for future research in AFM tip-based mechanical scratching method is presented.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Atomic Force Microscope; Tip-based nanomechanical machining; machining parameters; machining response

Document Type: Research Article

Publication date: December 1, 2016

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more