Skip to main content
padlock icon - secure page this page is secure

Specific Targeting of Engineered Nanoparticles to Activated Macrophages

Buy Article:

$68.00 + tax (Refund Policy)

Background: Inflammation is an immune response that indicates several pathophysiological conditions, including pathogen infection, tissue injury, and tumor growth, in human diseases. During the processes of infection, tumor growth and autoimmune responses, tissue-associated macrophages distributed in the body play a central role in the onset of inflammation and are actively involved in maintaining homeostasis.

Objective: Because the role of macrophages in diseases such as infectious diseases, chronic inflammatory diseases, and cancer are now well understood, strategies to target macrophages in uncontrollable diseases are of growing importance. The application of nanotechnology and nanoscience-based approaches for the treatment, diagnosis, monitoring, and control of biological systems has recently been referred to as “nanomedicine”. Nanoparticles not only are efficient for the delivery of therapeutic drugs and for imaging but also potentially facilitate cell activation and ablation. Certain unique types of nanoparticles naturally target cells of the mononuclear phagocyte system (MPS), and particularly macrophages.

Results: This natural targeting capacity can be used for application in drug delivery and diagnosis. Controlling nanoparticles’ physicochemical properties, including size, charge, and composition, has emerged as a favored approach to target macrophages to achieve high endocytic activity. Ligand-receptor strategies for nanoparticle targeting to macrophages have been explored, including peptide, antibody, and lectin coating to specifically target drug-loaded nanoparticles to specific receptor types expressed on macrophages.

Conclusion: This mini-review highlights rational approaches to the design and surface engineering of nanoparticles. Approaches to site-specific drug delivery and medical imaging for the treatment and diagnosis of macrophage-related human diseases are also discussed. Finally, recent nanotechnology-based approaches to devising macrophage-specific targeted therapy are highlighted.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Inflammation; liposome; macrophage; nanomedicine; nanoparticle

Document Type: Research Article

Publication date: February 1, 2016

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more