Skip to main content
padlock icon - secure page this page is secure

Near-infrared Light Responsive Upconversion Nanoparticles for Imaging, Drug Delivery and Therapy of Cancers

Buy Article:

$68.00 + tax (Refund Policy)

Cancers have become serious threat to human health and life, and they are critical to develop safe and effective theranostic methods for diagnosis and therapy of tumors. In recent years, real time cancer theranostic visualization systems (RT-CTVS) based on light-responsive nanoparticles have been developed. Especially, upconversion nanoparticles (UCNPs) have excellent optical properties and unique near-infrared (NIR) responsive. The minimized photodamage, low autofluorescence and high penetration depth can be achieved with UCNPs. Therefore, UCNPs are widely used in real time NIR mediated visualization systems of cancer diagnosis and therapy. In this review, we focus on the latest developments of rare earth ions doped upconversion fluorescence nanoparticles. First, the synthesis methods of UCNPs were briefly introduced. Second, the strategies of UCNPs surface modifications, including the ligand exchange, ligand oxidation, ligand interaction, ligand free synthesis, layer by layer growth and surface silanization were summarized. Third, the recent research progress in applying UCNPs to construct NIR light stimuli-responsive RT-CTVS, including imaging, drug delivery and photodynamic therapy (PDT) were highlighted. Finally, some of the current problems and future effort directions in these fields were also proposed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Drug delivery; Near-infrared light responsive upconversion nanoparticles (NIR-LRUCNPs); fluorescence imaging; photodynamic therapy (PDT); real time cancer theranostic visualization systems (RT-CTVS)

Document Type: Research Article

Publication date: February 1, 2016

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more