Skip to main content
padlock icon - secure page this page is secure

A Non-Alkoxide Sol-Gel Method for the Preparation of Magnetite (Fe3O4) Nanoparticles

Buy Article:

$68.00 + tax (Refund Policy)

Magnetite (Fe3O4) nanoparticles in the interval of 9∼12nm have been synthesized by an non-alkoxide sol-gel method. Through this simple technique, sol-gel materials were prepared from ethanolic solutions of metal chlorides without the need for alkoxides, polymeric gel agents, or elaborate reaction schemes. The gel formation has been studied, and the research shows that gel formation appears to be driven primarily by the formation of an Fe(III)-based network which incorporates Fe(II) into its nanoscale solid domains. The research of the annealing process indicates that magnetite (Fe3O4) nanoparticles can be obtained by annealing only under vacuum, but not in air. Future, Fe3O4 can be oxidized to Fe2O3, as evidenced by XRD, and VSM. The phase structures, morphologies, and particle sizes of Fe3O4 nanoparticles were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The results indicate that magnetite (Fe3O4) nanoparticles are homogeneous and have near-spherical shape with a narrow distribution in particle size. Finally, an investigation of the possible mechanism of Fe3O4 nanoparticles formation was performed. Both TG-DTA and X-ray Diffraction (XRD) studies suggest that the reaction of the decomposition of the precursor under vacuum conditions leads to Fe3O4 nanoparticles, while the precursors in air atmosphere is directly oxidized to gamma iron oxide. In addition, this approach may suggest a general route to produce complex multicomponent metal oxide in which the nanoscale oxide is stabilized and spatially distributed.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: A Non-Alkoxide Sol-gel method; Annealing process; Formation mechanism; Maghemite; Magnetic properties; Magnetite; Magnetite nanoparticles; Nanoparticles; Non-Alkoxide; Particle Size; Sol-gel; Vacuum annealing

Document Type: Research Article

Publication date: June 1, 2011

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more