Skip to main content
padlock icon - secure page this page is secure

Dielectric Wall Controlled Resonance Light Scattering of Coated Long Gold Nanowire

Buy Article:

$68.00 + tax (Refund Policy)

In this paper, we investigate the effects of a coated dielectric wall on the resonance light scattering (RLS) properties of a long gold nanowire. The RLS is shown to be strongly influenced by the presence of the dielectric surrounding which induces the changes of the surface plasmon resonance (SPR) and local polarized field characters. For gold nanowire coated by a dielectric wall, the RLS peak red shifts nonlinearly when the wall thickness is increased, which is different from the linear shift fashion of a bare gold nanowire embedding in immense dielectric surrounding. Furthermore, the scattering distribution patterns in the transversal section are also dependent on the coated dielectric wall. When dielectric constant of outer surrounding is greater than that of the dielectric wall, the intense scattering takes place at the poles of the wall along the incident polarization. On the contrary, greater wall dielectric constant may bring opposite scattering distribution. This tunable light scattering in dielectric wall coated gold nanowire makes it potentially useful in optical biosensing based on metallic nanoparticle enhanced RLS.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Dielectric constant; Gold; Nanowire; Resonance Light Scattering (RLS); Surface Plasmon Resonance (SPR); Wall thickness; dielectric wall; distribution; gold nanowire; one-dimensional nanostructures; optical; quasi-static approximation; resonance light scattering; shift; surface plasmon resonance; thickness

Document Type: Research Article

Publication date: June 1, 2011

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more