Skip to main content
padlock icon - secure page this page is secure

Self-Assembled Superlattices from Colloidal TiO2 Nanorods

Buy Article:

$68.00 + tax (Refund Policy)

The self-assembly of anatase TiO2 nanorods into 1D (ribbon), 2D (smectic, domino, honeycomb) and 3D (lamellar) liquidcrystalline ordered superlattices is a process that depends on the collaboration between evaporation dynamics and directional interactions. Herein, the roles of entropic depletion attractions and energetic dipole-dipole couplings between TiO2 nanorods in self-assembly process are particularly emphasized. Excess oleic acid surfactants act as depletion agents to induce the inter-rod depletion effect, and the origin of electric dipole moment along the longitudinal axes of TiO2 rods is theoretically authenticated by applying the Accelrys Materials Studio as a new strategy combined with Tasker's theory. These nanorod superlattices provided here may have great importance for tailoring new promising structures for photovoltaic application or exploring new inorganic liquid crystal materials.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Titanium oxide; depletion attraction; dipole-dipole coupling; liquid-crystal order; nanorod superlattice; self-assembly

Document Type: Research Article

Publication date: June 1, 2010

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more