Skip to main content
padlock icon - secure page this page is secure

Principles of Nanoflow Liquid Chromatography and Applications to Proteomics

Buy Article:

$68.00 + tax (Refund Policy)

The low levels of endogenous proteins in biological samples and the large dynamic range of the proteome complicate global analysis of gene expression at the protein level. The use of liquid chromatography (LC) in analytical chemistry is well established. However, the relatively low sensitivity associated with conventional LC makes it unsuitable for the analysis of certain biological samples. Furthermore, the flow rates at which it is operated are not compatible with the use of specific detectors, such as electrospray ionization mass spectrometers. Therefore, due to the analytical demands of biological samples, miniaturized LC techniques were developed to allow for the analysis of samples with greater sensitivity than that afforded by conventional LC. In nanoflow LC (nanoLC) chromatographic separations are performed using flow rates in the range of low nanoliter per minute, which result in high analytical sensitivity due to the large concentration efficiency afforded by this type of chromatography. NanoLC, in combination to tandem mass spectrometry, was first used to analyze peptides and as an alternative to other mass spectrometric methods to identify gel-separated proteins. More recently, gel-free analytical approaches based on LC and nanoLC separations have been developed, which are allowing proteomics to be performed in faster and more comprehensive manner than by using strategies based on the classical 2D gel electrophoresis approach.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 2D gel electrophoresis; Nanoflow Liquid Chromatography; nanoLC separations

Document Type: Review Article

Affiliations: Ludwig Institute for Cancer Research, 91 Riding House Street, London W1W 7BS, UK.

Publication date: January 1, 2005

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more