Skip to main content
padlock icon - secure page this page is secure

Open Access Mean Diffusivity in the Dopaminergic System and Neural Differences Related to Dopaminergic System

Download Article:
 Download
(PDF 3,288.6 kb)
 
Background: The mean diffusivity (MD) parameter obtained by diffusion tensor imaging provides a measure of how freely water molecules move in brain tissue. Greater tissue density conferred by closely arrayed cellular structures is assumed to lower MD by inhibiting the free diffusion of water molecules.

Methods: In this paper, we review studies showing MD variation among regions of the brain dopaminergic system (MDDS), especially subcortical structures such as the putamen, caudate nucleus, and globus pallidus, in different conditions with known associations to dopaminergic system function or dysfunction. The methodologies and background related to MD and MDDS are also discussed.

Results: Past studies indicate that MDDS is sensitive to pathological derangement of dopaminergic activity, neural changes caused by cognitive and pharmacological interventions that are known to affect the dopaminergic system, and individual character traits related to dopaminergic function.

Conclusion: These results suggest that MDDS can be one useful tool to tap the neural differences related to the dopaminergic system.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Mean diffusivity; basal ganglia; cognition; diffusion tensor imaging; dopamine; dopaminergic system

Document Type: Review Article

Publication date: May 1, 2018

More about this publication?
  • Current Neuropharmacology aims to provide current, timely and comprehensive reviews of all areas of neuropharmacology and related matters of neuroscience. The journal publishes reviews written by experts and leaders in the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience. The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more