Skip to main content
padlock icon - secure page this page is secure

Methamphetamine Induces Striatal Cell Death Followed by the Generation of New Cells and a Second Round of Cell Death in Mice

Buy Article:

$68.00 + tax (Refund Policy)

Our laboratory has been investigating the impact of a neurotoxic exposure to methamphetamine (METH) on cellular components of the striatum post-synaptic to the dopaminergic terminals. A systemic bolus injection of METH (30 mg/kg, ip) induces the production of new cells in the striatum during a period lasting from 24-48 hours after METH. The newly generated cells arise from dormant striatal progenitors and not from the subventricular zone. The newly generated cells display glial phenotypes and begin to die 24 hours after birth, or 2.5 days post-METH. The protracted phase of cell death lasts for at least three months post-METH at which time the bulk of the newly generated cells have disappeared. The METH-induced production of new cells is associated with enlarged striatal volume (up to 50% larger than controls in some animals). As the newly generated cells die over a period of three months, the enlarged striatal volume normalizes. In conclusion, a neurotoxic dose of METH induces the generation of new cells in the striatum associated with enlarged striatal volume. The new cells die over three months post-METH and the enlarged striatal volume returns to control levels. This observation is significant because studies involving METH users show striatal enlargement and the normalization of striatal volume in METH users who have been abstinent for up to 20 months.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Detoxified METH; Methamphetamine; Neurotoxicity; Striatal Cell; Striatum Volume; cytogenesis; neurotoxicity; neurotransmitter transporter; normalization; striatal volume; striatum

Document Type: Research Article

Publication date: March 1, 2011

More about this publication?
  • Current Neuropharmacology aims to provide current, timely and comprehensive reviews of all areas of neuropharmacology and related matters of neuroscience. The journal publishes reviews written by experts and leaders in the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience. The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more