Skip to main content

Free Content Prognostic Value of Cardiac Biomarkers Assessment in Combination with Myocardial 2D Strain Echocardiography for Early Detection of Anthracycline-Related Cardiac Toxicity

Background: Anthracyclines, a widely used chemotherapy agent with a definite survival improvement, can result in cardiac toxicity presenting with HF (heart failure).

Objective: We aim to assess the predictive value of cardiac biomarkers assessment in combination with myocardial two-dimensional strain echocardiography for early detection of cardiac toxicity in patients who underwent Anthracycline-based chemotherapy.

Methods: Fifty-two consecutive adult patients scheduled to undergo the first course of Anthracycline-based chemotherapy were subjected to the study. All the patients underwent highly sensitive 2D echocardiographic evaluation before the treatment, 4 and 12 weeks after completion of first-course chemotherapy. Longitudinal and segmental strains were measured. Serum levels of High-sensitive cardiac troponin I (hscTn-I) and N-terminal-pro-BNP (NT-proBNP) were also assessed before the initiation and 3 weeks after completion of first-course chemotherapy.

Results: Fifteen patients (28.8%) revealed a decrease in LVEF (Left Ventricular Ejection Fraction) throughout the evaluations, while just 5 patients met the criteria of cardiac toxicity (9.6%). AUC for Global Longitudinal Strain (GLS) ROC curve at 4 weeks of follow-up was calculated to be 0.968. Inferoseptal Systolic Longitudinal Strain (SLS) had the highest AUC value (AUC: 0.934) among different wall SLS. LVESD (Left Ventricular End-Systolic Diameter) at first and second evaluation could predict the risk of cardiac toxicity among LVESD, LVEDD (Left Ventricular End Diastolic Diameter) and LVEDV (Left Ventricular End-Diastolic Volume). Among cardiac biomarkers, hscTnI had higher sensitivity, while NT-proBNP had higher specificity for cardiac toxicity.

Conclusion: This study has shown that hs-cTnI with good sensitivity can predict cardiac toxicity in Anthracycline-based chemotherapy receiver. The use of strain with speckle echocardiography method has a prognostic value; however, both longitudinal and segmental strain should be assessed. Lateral and inferoseptal SLS (Segmental Longitudinal Strain) are specific markers of cardiac toxicity in the course of anthracycline-related cardiac toxicity.

Keywords: Anthracyclines; biomarkers; cardiotoxicity; cardiovascular diseases; echocardiography; heart failure

Document Type: Research Article

Publication date: March 1, 2020

More about this publication?
  • Cardiovascular & Hematological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in cardiovascular and hematological disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in cardiovascular and hematological disorders. As the discovery, identification, characterization and validation of novel human drug targets for cardiovascular and hematological drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Call for Papers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content