Skip to main content
padlock icon - secure page this page is secure

Reduction in Vasa Vasorum Angiogenesis by Lp-PLA2 Selective Inhibitor Through The HIF-1α and VEGF Expression Under Dyslipidemic Conditions in Atherosclerosis Pathogenesis

Buy Article:

$68.00 + tax (Refund Policy)

Background: Atherosclerosis is a chronic inflammatory disease which may lead to major cardiovascular events. The primary cause of atherosclerosis is Dyslipidemia. The increased level of lipid profile triggers endothelial dysfunction. This results in inflammation with the recruitment of monocyte, macrophage, T lymphocyte, and Mast cells secreted by an Lp-PLA2 enzyme which causes binding between macrophage and oxidized LDL. This binding results in the formation of foam cells and also the migration of smooth muscle cells. Following that, an Lp-PLA2 receptor hydrolizes OxPC which results in LysoPC and OxNEFA, bioactive compounds which stimulate the progression of atherosclerosis plaques. This process leads to cell hypoxia, which may result in the increase of HIF-1α and VEGF expressions and induction of vasa vasorum angiogenesis. Employing darapladib as an agent of Lp-PLA2 selective inhibitors, this study aimed to find out the effect of darapladib as an Lp- PLA2 selective inhibitor agent on the formation of vasa vasorum angiogenesis and the decrease of HIF-1α and VEGF expression in aortic tissue of rats with dyslipidemia.

Method: A true laboratory experiment with a randomized post-test control group design used 30 male spraque dowley rats as animal models which were divided into 6 groups: Normal 8 weeks, Normal 16 weeks, Dyslipidemia (DL) 8 weeks, Dyslipidemia (DL) 16 weeks, Dyslipidemia with darapladib treatment (DLDP) 8 weeks and Dyslipidemia with darapladib treatment (DLDP) 16 weeks. The data measured in this study were the lipid profile (total cholesterol, HDL, and LDL). Using EnzyChrom TM kit, hematoxylin eosin, and double-labelling immunofluorescene, the levels of lipid profile, vasa vasorum, HIF-1α and VEGF were measured.

Results: The study results which were analyzed using NOVA test showed that with darapladib administration, there was a significant decrease in vasa vasorum angiogenesis (p=0.000), HIF-1α (p=0.005) and VEGF (p=0.009) expression in each time series. This result proves that Lp-PLA2 inhibitor reduces inflammatory process.

Conclusion: Darapladib injection as an Lp-PLA2 selective inhibitor correlates with the decreasing vasa vasorum angiogenesis through alteration in HIF-1α and VEGF expressions in the aorta of high fat diet rats. We recommend further experiments to determine the effectiveness of darapladib with earlier time series in the atherosclerosis process.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Atherosclerosis; HIF-1α; VEGF; darapladib; dislipidemia; vasa vasorum

Document Type: Research Article

Publication date: November 1, 2018

More about this publication?
  • Cardiovascular & Hematological Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new Cardiovascular & Hematological Agents. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in Cardiovascular & Hematological medicinal chemistry.

    Cardiovascular & Hematological Agents in Medicinal Chemistry
    is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cardiovascular & hematological drug discovery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more