Skip to main content

Deleted in Colorectal Cancer (DCC) Pathfinding: Axon Guidance Gene Finally Turned Tumor Suppressor

Buy Article:

$68.00 + tax (Refund Policy)

Loss of heterozygosity (LOH) at human chromosome 18q, which includes the gene Deleted in Colorectal Cancer (DCC), has been linked to colorectal and many other human cancers. DCC encodes the receptor for the axon guidance molecule Netrin (Net) and functions during neural development in a variety of organisms. However, since its discovery in the 1990s, the status of DCC as a tumor suppressor has been debated, primarily due to a lack of support for this hypothesis in animal models. A recent study from our laboratory capitalized on the genetic tractability of Drosophila melanogaster to demonstrate that this gene functions as an invasive tumor suppressor, thereby providing the first direct link between DCC loss and metastatic phenotypes in an animal model for cancer. Two subsequent studies from other laboratories have demonstrated that DCC suppresses tumor progression and metastasis in murine colorectal and mammary tumor models. Combined, these findings have prompted the rebirth of DCC as a tumor suppressor and highlighted the need for continued analysis of DCC function in animal models for human cancer.

Keywords: Apoptosis; DCC; Drosophila melanogaster; LOH; axon guidance; cancer; metastasis; metastatic phenotype; netrin; tumor suppressor

Document Type: Research Article

Publication date: 01 October 2012

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content