Skip to main content

α7-Nicotinic Receptors and Cognition

Buy Article:

$68.00 + tax (Refund Policy)

Nicotinic α7 receptors have been shown in a variety of studies with animal models to play important roles in diverse components of cognitive function, including learning, memory and attention. Mice with α7 receptor knockouts show impairments in memory. Selective α7 agonists significantly improve learning, memory and attention. α7 receptors in limbic structures such as the hippocampus and amygdala have been demonstrated to play critical roles in memory. Blockade of α7 receptors in these areas cause memory impairments. In the brains of people with schizophrenia α7 receptors are impaired. This may be related to pronounced cognitive impairments seen with schizophrenia. There has been a major effort to develop α7 nicotinic agonists for helping to reverse cognitive impairment. These receptors are a promising target for development of therapeutic treatments for a variety of diseases of cognitive impairment including Alzheimer’s disease, attention deficit hyperactivity disorder (ADHD) and schizophrenia.





Keywords: ADHD; Alzheimer's disease; Schizophrenia; attention; cognition; deficit models; learning; memory; α7 agonist; α7-Nicotinic Receptors

Document Type: Research Article

Affiliations: Department of Psychiatry and Behavioral Sciences, Box #104790, Duke University Medical Center, Durham, NC 27710, USA.

Publication date: 01 May 2012

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content